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Complex Langevin for semisimple compact connected Lie
groups and U(1)
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Abstract. Several problems in quantum field theory like QCD at high densities lead to
complex-valued actionsS with S : G → C, whereG is some group. Under the assumption
that the complex Langevin process converges to a weakly stationary process we discuss the
conditions under which it correctly simulates expectation values defined by complex weights.
For technical reasons the discussion is restricted toU(1) and semisimple compact connected
Lie groups likeSU(n).

1. Introduction

There are several problems in physics which are defined by complex actions. Quantization
is thus defined by integrals over complex-valued weights and standard numerical methods
which rely on real positive weights are not applicable in this case. The complex Langevin
(CL) has turned out to be quite useful in the calculation of integrals over complex-valued
weight functions of the form e−2S . S can be an action or also the Hamiltonian of some
physical system. As pointed out in [1, 2] there is formally no restriction to a real-valued
drift term for Langevin equations and thus a straightforward application of the CL is quite
simple. Assuming a diffusion onR one has

dX = F(X) dt + dW (1)

with the drift term

F(x) = −dS(x)

dx
. (2)

The formal continuation leads to

dZ = F(Z) dt + dW (3)

where dZ = dX + i dY andWt is a real-valued Wiener process. By continuing to complex
actions one unfortunately introduces two problems of uncertainty. In contrast to the process
defined by a real actionS : G → R, where roughly speaking the existence of a unique
invariant measure can be proved (see, e.g., [19]), the extension to complex actions leads
to singular diffusions (see equation (3)) and in general the existence of a unique invariant
measure cannot be assumed. Events which might be connected with that problem have been
observed numerically. The second problem is that, although the process has converged
in some sense, the process will not necessarily give the right answer. This means that
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the stationary expectation value of some observable is not given by the integral over the
complex-valued weight function. In this case the following equation is violated:

lim
t→∞E(f (Zt)) =

1

N

∫
G

f (x)e−2S(x) dµ(x) (4)

whereZt ∈ G̃. G̃ is some appropriate analytic continuation of the manifoldG. Indeed
the CL is known to sometimes give the wrong answer (see, e.g., [3]). There have been
several approaches to understand the CL which mainly deal with processes onRn vice
versa it’s analytic extensionCn [3–7]. In numerical simulations, however, it turned out that
CL processes defined by actions onU(1) in particular perform surprisingly well [8, 9].
Unfortunately there are only a few results for CLs on group spaces and these results
mostly restrict to the definition of the Langevin equation or give hints for the numerical
solution [10–13].

Since the singular structure of the time evolution operator (e.g., the Fokker–Planck
operator) does not allow a general proof of the existence of a unique invariant measure for
the CL process, one restricts the investigation to the case where it is assumed that one has
certain stationary expectation values. In order to prove that these expectation values have
the right properties (i.e. equation (4) holds), these expectation values have to fulfill certain
conditions.

2. Orthogonal expansion of functions over groups

Before we continue with the CL we need to summarize a few results on unitary
representations of Lie groups.

A unitary representation of a topological groupG is a strongly continuous
homomorphismU : g → U(g) from G into the group of unitary operators on some
Hilbert spaceH called the representation space. Two unitary representationsU,V

with representation spacesH,H ′ are called unitarily equivalent if there exists a unitary
isomorphismT : H → H ′ such thatT ◦Ug = Vg ◦ T for everyg ∈ G. We will denote the
set of equivalence classes of equivalent irreducible representations byĜ and we writeUρ

for a member of the equivalence classρ.
Let U be a unitary representation of some groupG with representation spaceH . An

elementx0 ∈ H is called a cyclic vector if the linear span of the set{Ugx0 | g ∈ G} is
dense inH . If U has at least one cyclic vector then the representationU is called cyclic.

It can be proved [14–16] that any unitary representation is the direct sum of cyclic
representations and that a finite dimensional unitary representationU of a groupG can
be decomposed into a direct sum of irreducible representations. In particular one has that
any unitary representationU of a compact groupG is a direct sum of finite-dimensional
irreducible unitary representations and that any irreducible unitary representation of a
compact group is finite-dimensional.

Let ρ ∈ Ĝ and letUρ be in ρ. Choose a fixed but arbitrary basis(eρj )16j6n in the
representation spaceHρ with C-dimensionnρ and define the following continuous functions
onG:

u
ρ

jk :

{
G→ C

s 7→ (Uρ
s e

ρ

k , e
ρ

j ) 16 j, k 6 nρ.
(5)

The functionsuρjk are called coordinate functions. For these coordinate functions one has
the following orthogonality relations [14–16]:

(u
ρ

jk, u
ρ ′
hl) = 0 16 j, k 6 nρ 16 h, l 6 nρ ′ (6)
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if ρ 6= ρ ′ and

(u
ρ

jk, u
ρ

hl) =
1

nρ
δjhδkl 16 j, k 6 nρ 16 h, l 6 nρ. (7)

The set of functionsn1/2
ρ u

ρ

jk form an orthonormal basis forL2(G) with G a compact
group. Therefore forf ∈ L2(G) we have

f =
∑
ρ∈Ĝ

nρ∑
j,k=1

nρa
ρ

jku
ρ

jk (8)

whereaρjk = (f, uρjk) =
∫
G
f u

ρ

jk dµ. This result is also known as thePeter–Weyltheorem
[14–16].

For ρ ∈ Ĝ let us consider the continuous function

χρ :


G→ C

g 7→ TrUρ
g =

nρ∑
k=1

u
ρ

kk.
(9)

This functionχρ is called the character ofρ and makes sense, since it depends only on the
equivalence classρ. Moreover, the characters arecentral functions, i.e. functions obeying

f (g−1hg) = f (h) or equivalently f (gh) = f (hg) ∀ g ∈ G.
Indeed

χρ(g−1hg) = TrUρ

g−1hg
= Tr(Uρ

g−1U
ρ

h U
ρ
g ) = TrUρ

h = χρ(h).
For χρ we further have [15, 16]

(i) If Uρ andUρ ′ are equivalent thenχρ = χρ ′ ;
(ii) χρ(ghg−1) = χρ(h);
(iii) χρ⊕ρ

′ = χρ + χρ ′ ;
(iv) χρ⊗ρ

′ = χρχρ ′ ;
(v) χρ(g) = χρ(g−1);
(vi) χρ(e) = dimCHρ.

For these characters we also have orthogonality relations [14–16]

(χρ, χρ
′
) = 0 ρ 6= ρ ′ (10)

and

(χρ, χρ
′
) = 1 ρ = ρ ′. (11)

Whereas the functions (n1/2
ρ u

ρ

jk) build an orthonormal basis ofL2(G), the characters
(χρ)ρ∈Ĝ do so for the central functions. For every central functionf ∈ L2(G) we have

f =
∑
ρ∈Ĝ

(f, χρ)χρ. (12)

Let Tρ(G) denote the linear space spanned by the coordinate functionsu
ρ

jk. If G is
now a real compact connected semisimple Lie group and�(g) the Casimir element of the
universal enveloping algebraU(g) then the functions ofTρ(G) are eigenfunctions of�(g)
considering the Casimir element as a differential operator [14].
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3. The complex Langevin

Let M be somen-dimensional manifold. LetWi, 1 6 i 6 n real Wiener processes and
assumen+1 vector fieldsAi , 06 i 6 n. Then withf ∈ C∞0 (M) (for a compact manifold it
is sufficient to usef ∈ C∞(M)) we define a stochastic differential equation (SDE) [19, 20]
by

d(f ◦X) = (A0f )(X) dt +
n∑
i=1

(Aif )(X) ∗ dWi (13)

where
∑n

i=1(Aif )(X)∗dWi is the stochastic differential in the sense of Stratonovich denoted
by ∗.

It can be proved [19, 20] that for such an SDE there exists a unique solution(Xt )t<ζ
with lifetime ζ > 0 starting atX0 = x0.

Consider the above situation: fort < ζ we then have

d

dt
E(f ◦Xt) = E((Lf ) ◦Xt) (14)

with

L = A0+ 1

2

n∑
i=1

A2
i . (15)

To prove this one has to apply among other results the important relation between
Stratonovich and Ito differentials, which isX ∗ dY = X dY + 1

2dX dY . For details see,
e.g., [19, 20].

The adjoint operatorL∗ is often called the Fokker–Planck operator, especially in the
case whereM = Rn. Under certain conditions it can be proved that the operatorL∗ defines
a unique invariant measure with

lim
t→∞E(f ◦Xt) =

∫
M

f (x)ν(x) dµ(x) (16)

where

L∗ν = 0 (17)

and dµ could be the Haar measure on a group or any other appropriate volume
measure [19, 20].

Let G be a real analytic Lie group denoted from now on as real Lie group. A complex
analytic Lie group just denoted as a complex Lie groupGC, together with a homomorphism
γ : G → GC, is called theuniversal complexificationof G if every homomorphism
α : G→ H into a complex Lie groupH can be extended to a holomorphic homomorphism
αC : GC→ H such thatαC ◦ γ = α [17, 16].

For such a universal complexification one has the following results [17, 16]:

(i) The universal complexification exists for any real connected Lie group.
(ii) In the case of a compact groupG the homomorphismγ : G → GC is injective and

γ (G) is a compact subgroup ofGC.
(iii) If L(G) denotes the Lie algebra ofG then

C⊗R L(G) =: L(G)C ' L(GC).
(iv) If G is semisimple then so isGC.
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For the groupsSU(n) andU(n) which are important in physics we have the respective
relations

SU(n)C ' SL(n,C)
U(n)C ' GL(n,C).

Let G be a compact group and note thatu : G→ U(n), g 7→ u
ρ

ij (g)16i,j6n is a unitary
matrix representation inCn, n = dimρ. The existence of a complexification implies that
u can be extended to some holomorphic matrix representationuC, or in other words, the
coordinate functionsuρij have holomorphic extensionsuρ,Cij .

From now on we think ofG as a subgroup ofGC. A complex Lie group of dimension
n may be regarded as a real Lie group of dimension 2n. Moreover, in the case of a
real connected Lie group remark (iii) shows that if(Aa)16a6n is anR-basis ofL(G) then
(Aa)16a6n is aC-basis ofL(GC). Thus ((Aa)16a6n, (iAa)16a6n) is anR-basis ofL(GC)
when considered as a real Lie algebra.

Consequently, if we regardGC either as a complex or real manifold we may distinguish
the following derivations. Take a basis elementAa ∈ L(GC) andf ∈ O(GC) (we denote
the set of holomorphic functions byO(GC)) then on the complex Lie group we have

(Aaf )(s) = d

dz
f (s expzAa)

∣∣∣∣
z=0

s ∈ GC (18)

where8 : C × GC → GC, (z, s) 7→ s expzAa is the analytic flow of the left invariant
vector fieldAa corresponding toAa.

In the real case we distinguish

(Axaf )(s) =
d

dt
f (s exptAa)

∣∣∣∣
t=0

s ∈ GC f ∈ C∞(GC) (19)

and

(Ayaf )(s) =
d

dt
f (s expt iAa)

∣∣∣∣
t=0

s ∈ GC f ∈ C∞(GC) (20)

where(t, s) 7→ (s exptAa)
(
(t, s) 7→ (s expt iAa)

)
are the two restrictions toR × GC of

the flows corresponding to the two basis elementsAa (iAa). Note that in (19) and (20) the
superscriptsx andy have only notational meaning.

In the case wheref ∈ O(GC) we have

Aaf = Axaf = −iAyaf. (21)

Finally, restricting8 to R×G→ G we obtain the derivatives onG:

(Ar
af )(s) =

d

dt
f (s exptAa)

∣∣∣∣
t=0

s ∈ G f ∈ C∞(G) (22)

(the superscript ‘r’ stands for restriction toG).
We define the CL equation as the following stochastic differential equation onGC

regarded as a real manifold. WithS ∈ C∞(GC) we demand that∀ f ∈ C∞(GC)
d(f ◦X) = −

∑
a

(θa(Axaf ))(X) dt −
∑
a

(φa(Ayaf ))(X) dt +
∑
a

(Axaf )(X) ∗ dWa (23)

where

θa = 1
2(A

x
aReS +Aya Im S)

φa = 1
2(A

x
a Im S −AyaReS).
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Whenf, S ∈ O(GC), using (21) equation (23) simplifies to

d(f ◦X) = −
∑
a

(AaS)(Aaf )(X) dt +
∑
a

(Aaf )(X) ∗ dWa. (24)

For f, S ∈ O(GC), assuming thatE(f ◦Xt) exists, it follows from equation (24) that

d

dt
E(f ◦Xt) = E((LCf ) ◦Xt) (25)

whereLC = 1
2

∑
a A2

a −
∑

a(AaS)Aa.
Let G be a complex analytic semisimple group,G a compact real form ofG, andN a

connected open neighbourhood ofG in G. If f is holomorphic onN such thatf |G = 0,
then f = 0 on N [18]. This result is also known as Weyl’s unitarian trick. This is the
generalization of the well known result for a holomorphic function of one variable.

With the aid of Weyl’s unitarian trick we can show now that the functionsu
ρ,C
ij are

eigenfunctions of�C := 1
2

∑
a A2

a wheneverG is a real connected semisimple Lie group:

�Cu
ρ,C
ij

∣∣
G
= �ru

ρ

ij = λρuρij (26)

↓ holomorphic extension

�Cu
ρ,C
ij

!= λρuρ,Cij . (27)

In equation (27)
!= follows from the unitarian trick, since the equality holds onG.

Next we list two equalities that will be needed in what follows.
(i) ∀ s ∈ GC:

(Aauρ,Cjk )(s) =
d

dz
(u
ρ,C
jk (s expzAa))

∣∣∣∣
z=0

(28)

= d

dz
(
∑
h

u
ρ,C
jh (s)u

ρ,C
hk (expzAa))

∣∣∣∣
z=0

(29)

=
∑
h

u
ρ,C
jh (s)

d

dz
(u
ρ,C
hk (expzAa))

∣∣∣∣
z=0

(30)

=
∑
h

u
ρ,C
jh (s)B

ρ

a,hk. (31)

(ii) ∀ s ∈ G:

Ar
au
ρ

jk(s) =
∑
h

u
ρ

jh(s)B
ρ

a,hk (32)

because for analytic functions we have d/dz = d/dt .
The matrices(Bρa,hk)16h,k6dimρ ∈ M(dimρ,C) are the Lie algebra basis elements of the

matrix representationuC (u).
Now we consider a stochastic processX on the complexificationGC of a real connected

compact semisimple Lie groupG obeying the complex Langevin equation.
We define3ρ

t,ij := E(uρ,Cij ◦Xt) and letS have the expansion

S =
∑
ρ∈2

∑
l,m

c
ρ

lmu
ρ

lm ⇒ SC =
∑
ρ∈2

∑
l,m

c
ρ

lmu
ρ,C
lm

with 2 a finite subset ofĜ. If we assume that
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(i) the expectation values become stationary so that we may define3
ρ

ij := limt→∞ E(u
ρ,C
ij ◦

Xt) and ∑
ρ∈Ĝ

∑
i,j

nρ |3ρ

ij |2 <∞ (33)

then there is ah ∈ L2(G) such that

3
ρ

ij =
∫
u
ρ

ijh dµ (34)

whereh is given by

h =
∑
ρ∈Ĝ

∑
i,j

nρ3
ρ

iju
ρ

ij . (35)

(ii)

lim
t→∞E((u

ρ,C
lp u

ρ̂,C
iq ) ◦Xt) =

∫
u
ρ

lpu
ρ̂

iqh dµ

∀ ρ, ρ̂ ∈ Ĝ ∀ 16 l, p 6 dimρ 16 i, q 6 dim ρ̂ (36)

thenFh = 0 in the sense of distributions with

F :=
∑
a

Ar
a

(
1
2A

r
a + (Ar

aS)
)
. (37)

SinceF is elliptic, h is ∈ C∞(G) (by Weyl’s lemma). Note that 0 is an isolated eigenvalue
of F and the corresponding normalized eigenvector ish = (1/N )e−2S with N = ∫ e−2S dµ,
assuming 0< N <∞.

This can be seen as follows.∀ ρ̂ ∈ Ĝ, ∀ 16 i, j 6 nρ we have

d

dt
3
ρ̂

t,ij = E
({

1

2

∑
a

A2
au
ρ̂,C
ij −

∑
a

(AaSC)(Aauρ̂,Cij )

}
◦Xt

)
(38)

by equation (25)

d

dt
3
ρ̂

t,ij = E
(
λρu

ρ̂,C
ij ◦Xt

)
−
∑
a

∑
ρ∈2

∑
l,m

∑
p

∑
q

c
ρ

lmB
ρ
a,pmB

ρ̂

a,qj

(
(u
ρ,C
lp u

ρ̂,C
iq ) ◦Xt

)
(39)

by equations (27), (31)

d

dt
3
ρ̂

t,ij = λρE
(
u
ρ̂,C
ij ◦Xt

)
−

∑
all indices

c
ρ

lmB
ρ
a,pmB

ρ̂

a,qjE
(
(u
ρ,C
lp u

ρ̂,C
iq ) ◦Xt

)
(40)

lim
t→∞

(
d

dt
3
ρ̂

t,ij

)
= λρ

∫
u
ρ̂

ijh dµ−
∑

all indices

c
ρ

lmB
ρ
a,pmB

ρ̂

a,qj

∫
u
ρ

lpu
ρ̂

iqh dµ (41)

=
∫
(�ru

ρ̂

ij )h dµ−
∑
a

∫
(Ar

aS)(Ar
au
ρ̂

ij )h dµ = 0 (42)

because of equations (26), (32) and stationarity.
Clearly,h ∈ L2(G) may be regarded as a regular distribution. To show

(Fh)(φ) = 0 ∀φ ∈ C∞0 (G) = C∞(G)
it is sufficient to show that

(Fh)(u
ρ

ij ) = 0 ∀ ρ ∈ Ĝ ∀ 16 i, j 6 nρ
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since everyφ ∈ C∞(G) has a harmonic expansion in terms of theuρij . However, this is
already expressed in equation (42).

The result above remains valid for arbitraryS ∈ C∞(G). If S now has the harmonic
expansion

S =
∑
ρ∈Ĝ

∑
l,m

c
ρ

lmu
ρ

lm (43)

and

S2n =
∑
ρ∈2n

∑
i,j

c
ρ

lmu
ρ

lm n > 0 (44)

is any sequence of truncated expansions with finite subsets2n ⊂ Ĝ then limn→∞ ‖S2n −
S‖2 = 0. Moreover, sinceS ∈ C∞(G) the convergence is even uniform like it is for
exp(−2S2n)→ e−2S. The calculations above show that∀2n

3
ρ,2n
ij := lim

t→∞3
ρ,2n
t,ij =

1

N

∫
u
ρ

ij exp
(−2S2n

)
dµ (45)

where 3ρ,2n
t,ij := E(u

ρ

ij ◦ X2nt ) are the expectation values obtained from the process
corresponding to the actionS2n . Now by the dominated convergence theorem we obtain

lim
n→∞3

ρ,2n
ij = 1

N

∫
u
ρ

ije
−2S dµ. (46)

3.1. The complex Langevin on U(1)

The Abelian multiplicative groupU(1) has the complexificationU(1)C = C\{0}. U(1)
is isomorphic to the additive torus groupT := R/2πZ and we study the diffusion onT .
A function on T may be considered as a function onR having period 2π and harmonic
analysis onT is the well known Fourier analysis. Everyf ∈ L2(T ) has an expansion

f =
∑
q

cqeiqx with cq =
∫ 2π

0
f (x)e−iqx dµ(x) (47)

where dµ(x) = dx/2π . The considerations above immediately carry over to the present
case. The vector fields are nowA = d/dz, Ar = d/dx and equation (25) has the translation

d

dt
E(f ◦Xt) = E

({
1

2

(
d2

dz2
f

)
−
(

d

dz
S

)(
d

dz
f

)}
◦Xt

)
. (48)

Again suppose thatS can be expressed as a finite series

S(x) =
∑
q

cqeiqx (49)

and define

3k
t := E(eikXt ). (50)

As before we assume that the expectation values become stationary with

3k := lim
t→∞E

(
eikXt

)
(51)

and ∑
q∈Z
|3q |2 <∞ (52)



Complex Langevin for semisimple compact connected Lie groups 2549

then withh :=∑q 3
qe−iqx we have3k = ∫ eikxh dµ.

In the limit t →∞, and with equation (48), we obtain

0= −k
2

2
3k + k

∑
q

qcq3
q+k (53)

= −k
2

2

∫
eikxh dµ+

∫
k
∑
q

qcqei(q+k)xh dµ (54)

= 1

2

∫ (
d2

dx2
eikx

)
h dµ−

∫ ((
d

dx
S

)
h

)(
d

dx
eikx

)
dµ. (55)

The same arguments we used above shows that

Fh = 0 (distributional)

with

F = d

dx

(
1

2

d

dx
+
(

d

dx
S

))
so that the normalized solution is given byh = (1/N )e−2S . As in the previous case
following the same arguments it is also true that3k = ∫

eikxe−2S dµ for arbitrary
S ∈ C∞(T ).

4. Conclusions

In this paper we have discussed the general environment of the CL (roughly speaking)
on groups which have an important impact on physics. We have also identified certain
conditions on such CL processes which now permit a verification of the correctness of the
process on these manifolds. Unfortunately we are still unable to present a complete theory
of CLs which would include criteria which allow proof of convergence at all.
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